

Suzanne Martin, Jean Bruston, Alain Maestrini, Erich Schlecht, Barbara Nakamura, Andy Fung, Peter Smith† and Imran Mehdi

SWAT

Caltech – Jet Propulsion Laboratory
†Now at Cree Inc., Durham, NC

Presentation to the 11th International Symposium on Space THz Technology

May 2, 2000

JPL - 11th International Symposium on Space THz Technology - May 2, 2000

The frameless membrane: an improved technology for THz circuits

Acknowledgment

- The research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
- · Chris Mann for Mixer design and assembly

Introduction

- Objectives: build components (mixers, multipliers) with operating frequency in the 1 to 3 THz range.
- Rationale: provide components for space borne receivers.
- State of the Art:

Planar Mixers: 2.5 THz (JPL, RAL).

Planar Multipliers: 600 GHz (JPL).

- Technology development goal: Extend the existing membrane diode (MOMED) technology by:
 - reducing the thick GaAs support frame to increase design flexibility
 - developing new beam lead structures to provide RF probes, tuning elements, mechanical support and DC bias contacts
 - implementing multi-diode schemes to expand circuit applications
 - shrinking overall circuit dimensions to increase device yield/wafer
 - maintaining circuit handleability
- Status: Built and handled prototype devices. New wafers in process.

JPL - 11th International Symposium on Space THz Technology - May 2, 200

Current Technology: Framed membranes

- •Robust.
- •Easy handling.
- •Planar at very high frequency.

•RF access normal to membrane or through frame. => reduced number of implementation and increased loss

Result: Mixer noise temperature 6500K at 2.5 THz: M.Gaidis et al.

JPL - 11th International Symposium on Space THz Technology - May 2, 200

5

The frameless membrane: an improved technology for THz circuits

Technology: Frameless GaAs Membrane

Get rid of frame

- •Advantages:
 - •Increased design flexibility
 - •All shapes possible
 - •Split waveguide block implementation possible (no frame in the way)
- •Drawbacks:
 - •Handling (use of "sacrificial frame" possible)

Extensive use of Beam Leads

- •Advantages:
 - •Simplified assembly (no soldering, chip "dropped in")
 - •Simplified bias scheme (no wire bonding)
 - •Low loss, high bandwidth antennas/circuits (air dielectric)
- •Drawbacks:
 - •Fragile during handling

PL - 11* International Symposium on Space THz Technology - Way 2, 200

Conclusion

- Frameless GaAs Membrane:
 - Increases design flexibility
 - split waveguide
 - bias scheme
 - · integration and assembly
 - More compact structures (more designs/variations per wafer)
- Demonstrated fabrication and handling of prototype.
- High frequency designs to 1200 and 2400 GHz have been completed. The circuits are currently being fabricated.

Pt. - 11th International Symposium on Space THz Technology - May 2, 20